skip to main content


Search for: All records

Creators/Authors contains: "Wilcke, Wolfgang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. A large body of research shows that biodiversity loss can reduce ecosystem functioning. However, much of the evidence for this relationship is drawn from biodiversity–ecosystem functioning experiments in which biodiversity loss is simulated by randomly assembling communities of varying species diversity, and ecosystem functions are measured. This random assembly has led some ecologists to question the relevance of biodiversity experiments to real-world ecosystems, where community assembly or disassembly may be non-random and influenced by external drivers, such as climate, soil conditions or land use. Here, we compare data from real-world grassland plant communities with data from two of the largest and longest-running grassland biodiversity experiments (the Jena Experiment in Germany and BioDIV in the United States) in terms of their taxonomic, functional and phylogenetic diversity and functional-trait composition. We found that plant communities of biodiversity experiments cover almost all of the multivariate variation of the real-world communities, while also containing community types that are not currently observed in the real world. Moreover, they have greater variance in their compositional features than their real-world counterparts. We then re-analysed a subset of experimental data that included only ecologically realistic communities (that is, those comparable to real-world communities). For 10 out of 12 biodiversity–ecosystem functioning relationships, biodiversity effects did not differ significantly between the full dataset of biodiversity experiments and the ecologically realistic subset of experimental communities. Although we do not provide direct evidence for strong or consistent biodiversity–ecosystem functioning relationships in real-world communities, our results demonstrate that the results of biodiversity experiments are largely insensitive to the exclusion of unrealistic communities and that the conclusions drawn from biodiversity experiments are generally robust. 
    more » « less
  3. Abstract

    Atmospheric deposition of dissolved organic carbon (DOC) to terrestrial ecosystems is a small, but rarely studied component of the global carbon (C) cycle. Emissions of volatile organic compounds (VOC) and organic particulates are the sources of atmospheric C and deposition represents a major pathway for the removal of organic C from the atmosphere. Here, we evaluate the spatial and temporal patterns of DOC deposition using 70 data sets at least one year in length ranging from 40° south to 66° north latitude. Globally, the median DOC concentration in bulk deposition was 1.7 mg L−1. The DOC concentrations were significantly higher in tropical (<25°) latitudes compared to temperate (>25°) latitudes. DOC deposition was significantly higher in the tropics because of both higher DOC concentrations and precipitation. Using the global median or latitudinal specific DOC concentrations leads to a calculated global deposition of 202 or 295 Tg C yr−1respectively. Many sites exhibited seasonal variability in DOC concentration. At temperate sites, DOC concentrations were higher during the growing season; at tropical sites, DOC concentrations were higher during the dry season. Thirteen of the thirty‐four long‐term (>10 years) data sets showed significant declines in DOC concentration over time with the others showing no significant change. Based on the magnitude and timing of the various sources of organic C to the atmosphere, biogenic VOCs likely explain the latitudinal pattern and the seasonal pattern at temperate latitudes while decreases in anthropogenic emissions are the most likely explanation for the declines in DOC concentration.

     
    more » « less